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We present an approximate analytical calculation of the time-dependent structure factor for the
phase-ordering dynamics of nematic liquid crystals. The structure factor is found to exhibit a k ~3 tail,
due to the presence of % integrally charged string defects. Our theoretical results are in good agreement
with simulation data, and are consistent with recent experiments.
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There has been considerable recent interest in the
phase-ordering dynamics of systems which are not de-
scribed by a simple scalar order parameter [1-10]. In
particular, it has been predicted [4,5] that for a vector or-
der parameter with rotational symmetry [described by
the O(n) model], with n <d where d is the dimension of
space, the structure factor should exhibit a power-law
tail,

S(k,t)~L(¢) "k d+m (1)

for kL (t)>>1 (but ka <<1), where L (t) is the charac-
teristic length scale at time ¢ after a quench into the or-
dered phase and a is a microscopic length scale. Equa-
tion (1) generalizes Porod’s law [11] (which applies for
the case n =1), and can be understood very simply in
terms of the topological defects in the order-parameter
field [4-6,10]. A high density of such defects is nucleated
by the initial quench, with the density decreasing during
the subsequent coarsening process.

Nematic liquid crystals provide an ideal experimental
system with a nonscalar order parameter. The first ex-
periments [7,8] have been interpreted as being consistent
with Eq. (1), with # =3 (and d =3). Unfortunately, how-
ever, nematic liquid crystals do not possess a simple O(n)
symmetry, so the conditions under which (1) were derived
do not hold. Nevertheless, the interpretation of (1) in
terms of defects leads, as we shall see, to a natural gen-
eralization to nematic liquid crystals. To simplify the dis-
cussion we will work within the familiar equal-constant
approximation [12]. Then there are two symmetries to
consider: a global symmetry under rotations of the direc-
tor n, and a local inversion symmetry under n— —n.
The latter is absent in the O(3) model. The presence of
the inversion symmetry means that, in addition to the
monopole defects of the O(3) model, the nematic liquid
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crystal also possesses stable 1 string defects [13], in which
the director rotates through 7 on encircling the string.

Consideration of the possible stable defects leads to a
simple interpretation of (1) [10]. Extending the scaling
hypothesis beyond the scalar fields for which it was origi-
nally proposed [14], we assume that the real-space equal-
time pair correlation function has the scaling form
C(r,t)=f(r/L(t)). Fourier-transforming this result
gives the structure factor S(k,t)=L (¢)% (kL (z)). For
kL (t)>>1, the structure factor probes length scales
much shorter than L (¢). In this regime, therefore, one
expects S (k,?) to be the sum of contributions from in-
dependent defects, i.e., linear in the defect density pg..
For n-component vector fields, pyc~L (¢)~". Extracting
this factor from the scaling form for S (k, ) yields (1) im-
mediately. In particular, (1) implies Kk ~> and k ~ tails in
the O(2) and O(3) models in d =3 due to string and
monopole defects, respectively. In fact, the form of the
power-law decay (and even its amplitude) can be calculat-
ed directly from the field of a single defect [15]. For
nematic liquid crystals, this implies contributions of or-
der k 73 and k ~° from strings and monopoles, respective-
ly. The experimental finding of a k ~° tail [7,8] seems to
imply, therefore, that scattering from monopoles dom-
inates the structure factor at large kL (¢). The theoretical
approach described here, however, leads to a k ~° tail, ap-
propriate to string defects, and close to a recent simula-
tion result that gave a tail exponent of about 5.3 [9].
Below we will show that both experiments and simula-
tions over a limited range of kL (¢) tend to overestimate
this exponent, and that both are actually consistent with
an asymptotic exponent of 5. But first we present our
analytical approach.

The order parameter for a nematic liquid crystal is [12]
a 3 X3 traceless, symmetric tensor Q. Within the equal-
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constant approximation, an appropriate Ginzburg-
Landau-Wilson free-energy functional (in dimensionless
variables) is

FIQ]= [ d[iTr(VQ?+V(Q)], @)
V(Q)=—1TrQ?—1TrQ*+ H(TrQ*? . (3)

The values of the coefficients in ¥ (Q) have been chosen
for later convenience; the sign of the TrQ2 term indicates
that the system is in its ordered phase; the sign of the
TrQ? term implies prolate ordering, as is appropriate for
nematic liquid crystals. We take the dynamics to be
given by the time-dependent Ginzburg-Landau equation
0,0 =—(8/8Q)NF[Q]—ATrQ), where A is a Lagrange
multiplier included to maintain the constraint TrQ =0.
Using (2) for F[Q], and using the constraint to eliminate
A, we have the equation of motion

9,0=V’Q+Q +{Q*—(I/3)TrQ*}—Q TrQ*, ()
where I is the unit tensor. The dynamics thus contains
two features: a diffusive behavior, represented by the V2Q
term in (4), and a relaxational behavior represented by
the other terms, which drive the order parameter locally
to one of the minima of the potential ¥ (Q). It is the non-
trivial interaction between these features that makes (4)
extremely difficult to solve.

The essence of the theoretical approach for a vector or-
der parameter is an approximate decoupling of these two
aspects of the dynamics [4]. For the O(n) model, de-
scribed by a vector field ¢, the potential ¥ (¢) has (with ¢
suitably scaled) a degenerate ground-state manifold
#*=1. The approximate equations for the vector theory
[4] amount to introducing a diffusion field ¢!, and im-
posing $=¢'"'/|¢'?| at late times to ensure that ¢ lies on
the ground-state manifold. This approach captures the
essential features of the dynamics of the defects (defined
by the zeros of ¢'%) seeded by the initial conditions. We
extend this methodology to the case of a tensor field as
follows. We start by introducing a diffusive tensor field
Q9 satisfying

a,Q(O):VZQ(O) , (5)
and define
Q=r(Q", (6)

with the (tensor) function f(Q'®’) obtained from the
stable fixed points of Eq. (4). Thus the function f(Q‘?)
gives the stable minimum of the potential ¥ (Q) to which
Q would flow under the dynamics (5) for a spatially uni-
form initial condition Q. To find f we introduce the
quantities R =TrQ?, S =TrQ3, and work in the basis in
J

P(Q"(1),02)=N exp |~ L
—y

where N =3[7%(1—y?)]75/? is a normalization constant,
and y [ =vy(12)] is the normalized correlator of Q‘?:

_ (Tr{Q"(1)Q2)})
Y (TrQ (1)) /2(TrQ©(2)2)172

=exp(—r2/8t) , (13)

5 [%TI‘{Q(O)( 1 )2+Q(0)(2)2} —y Tr{Q(O)(l)Q(O)(Z)}]
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which @ is diagonal. From (4) (omitting the diffusive
term), R, S and the three elements Q; of the diagonal ten-
sor Q satisfy the equations

9,0,=Q(1—R)+Q?—R /3, (7)
9,R=2R(1—R)+2S , (8)
3,S=3S(1—R)+R2*/2 . (9)

Setting the left-hand sides to zero to find fixed points, and
using (8) to eliminate S from (9), gives R*=0, 2, or 3.
The fixed point R * =0 corresponds to Q =0, a local max-
imum of V(Q). For R*=2, (7) gives the fixed-point
values Q;* as —Z and 1. Imposing the traceless condition
gives three diagonal fixed-point tensors Q whose (diago-
nal) elements (Q*,Q3,07%) are (—2,1,1) plus permuta-
tions. These correspond to oblate ordering (largest eigen-
value negative), and a stability analysis shows that these
fixed points are saddle points of V(Q). Finally for
R*=3, we find Q*=1 or —L, giving fixed points
(1,—=3,—%) plus permutations. These fixed points,
which correspond to the desired prolate ordering (largest
eigenvalue positive), are the required global minima of
V(Q).

Determining the function f(Q‘?’) amounts to finding
the basins of attraction of the three stable fixed points.
The complete set of fixed points, and their stabilities, are
shown schematically in Fig. 1. From the symmetry of
the figure it is clear that, if Q'® is the diagonal matrix
(Q,,0,,03), then the stable attractor for the initial con-
dition Q' is the fixed point (1, —1, —1) if Q, is the larg-
est of the Q;, and so on. Clearly for a general (not neces-
sarily diagonal) tensor Q7 the stable attractor has ele-
ments

Qab:fab(Q(O))z%(nanb—%aab) ’ (10)

where the local director n is simply the eigenvector of
Q@ with largest eigenvalue. Representing space-time
points (r,2), (r5,¢) by “1” and “2” respectively, with
r= [rl —rzl, the two-point correlation function is given by

C12)=X(Tr{f(Q)F(QV2)N}) , (11)

where the factor Z normalizes the correlation function to
unity at short distance, and the average is over the joint
probability distribution for Q©(1) and Q‘©(2). The
latter is readily calculated from (5). Taking the initial
distribution of Q‘°) to be Gaussian, it stays Gaussian at
all times [because (5) is linear], and the required joint dis-
tribution is

, (12)

f
and the final result follows trivially from (5).

We compute the average required in (11) by Monte
Carlo methods [16]. Each Q‘°(i) (i =1,2) involves five
independent matrix elements. A convenient way to
parametrize the matrix is to write the diagonal ele-
ments as Q) =v2/3x, Q0% =—x/vV6+y/v2, and
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FIG. 1. Flow diagram (schematic) showing the basins of at- 0.2
traction of the three minima of the potential V(Q) [Eq. (3)], ’
namely (1,-—%,—%) and permutations. The coordinates of a
point are obtained by dropping perpendiculars to each of the . A
axes: all points in the plane satisfy Q; +Q, +Q3;=0. 0 0 0}4 0f8 1.2 1.6
x[=r/L(1)]
0) — __ r > : iy
03 x/V6 y/\/2, in which the traceless condition FIG. 2. Real-space scaling function f(x), defined by

is explicitly satisfied, and the off-diagonal elements as

D=z, /V2 (i <j), with Q['=Q/7. At a given space
point, X, y, Z15, Z13, and z,; are five independent, Gauss-
ian random variables with zero mean and unit variance.
However, a given variable (e.g., x) is spatially correlated
with itself (but not with the other four variables), with
correlator {x(1)x(2))=7, given by (13). It is easy to
verify that these rules are equivalent to the probability
distribution (12).

To evaluate C(12), a large number (at least 10°) of pairs
of Gaussian random matrices were generated, as de-
scribed above, for each value of y. For each matrix in a
given pair, the eigenvector n corresponding to the largest
eigenvalue was determined, and the corresponding tensor
computed from (10). Finally, the average (11) was calcu-
lated over all pairs with a given y. The results for
C(12)=f(x), plotted against the scaling variable

x =r/V/8t, are presented in Fig. 2. Also shown in Fig. 2
are the simulation data of Ref. [9]. The data have been
rescaled, with L (z) chosen to give the best fit to the
theoretical curve at each time ¢ [17]. The resulting fit is
extremely good.

We have previously noted [9] that the equivalent
theory for the O(2) model [4] also fits our real-space data
well. The best fit is included in Fig. 2. Remarkably, it
fits the data as well as Eq. (11). In fact, the simulation
data for the O(2) model [2,18] and nematic liquid crystal
[9] are virtually indistinguishable.

The main interest in the scaling function f(x) is the
short-distance behavior (x <<1), since this determines
the behavior of the structure factor for kL (¢) >>1 [4,15].
A number of points in this range were determined with
high precision, and the small-x behavior determined. A
plot of [1—f(x)]/x? against Inx is linear at small x (see
inset, Fig. 2), implying the small-x dependence

f(x)=1+ax%nx —bx?+ --- , (14)

where a ~1.11, b ~0.65. The presence of the x “Inx term
as the leading short-distance singularity in f(x) implies a
k 73 tail in its Fourier transform, the structure factor [4].

C(r,t)=f(r/L(t)). Continuous curve: theoretical prediction
(11), with L (t)=V'8¢. The inset shows that the small-x behav-
jor of the theory is described by Eq. (14). Data points: simula-
tion data from Ref. [9], with L (#) fixed from the best fit to the
theory; broken curve: best fit of the O(2) theory (Ref. [4]) to the
data.

We looked for an x> term as the next leading term in (14),
signaling a monopole contribution (and giving an addi-
tional k ~® term in the structure factor) but found no evi-
dence for one: The next term in (14) seems to be O (x*)
or, more likely, O (x*Inx). We conclude that, within the

L3Sk h)]

enlkL(D)]

FIG. 3. Log-log plot for the scaled structure factor. Con-
tinuous curve: the O(2) theory; data points: simulation data
from Ref. [9], rescaled as described in the caption to Fig. 2; the
experimental data from Fig. 7 of Ref. [8] are shown on the left,
arbitrarily positioned: they can be moved left-right and up-
down. The straight line has slope —5. The simulation data
contain an overall factor of % that was inadvertently omitted in
Ref. [9].
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approximation given by (5) and (6), the dynamics (4) gen-
erates a finite string density, scaling as L (¢)” % but a
monopole density smaller than L (z)”3. This is in accord
with the experimental results of Yurke et al. [19], who
also find that the monopole density decreases more rapid-
ly than expected from naive scaling considerations.

To compute the structure factor S(k,?), we Fourier-
transformed various analytic fits to the Monte Carlo in-
tegration data for C(12). Unfortunately, it was difficult to
obtain results which were independent, to the accuracy
we desired, of the fitting function used. However, the re-
sults were always very close to the structure factor for the
O(2) theory [4] which, in real space, is scarcely distin-
guishable from the nematic liquid crystal (Fig. 2). The
latter scaled structure factor is plotted, in log-log form, in
Fig. 3, along with the simulation data from Ref. [9]. The
agreement is good, even in the tail, despite the fact that a
tail exponent of 5.3 was quoted for the simulation.
Closer inspection of Fig. 3 provides an explanation: the
data ‘“‘overshoot” the eventual asymptotic line, and ap-
proach this line from above, giving a larger (i.e., more
negative) effective exponent at smaller KL (¢). A similar
feature is present in the theoretical curve.

The good agreement of simulation and theory is strong
evidence for an asymptotic slope of —5. Also included in
Fig. 3 are experimental data from Ref. [8]. We have not
attempted a detailed comparison with theory: the experi-
mental data can be moved left or right, and up or down,
in the figure—the lack of structure in the data precludes
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any attempt at a precise fit. Moreover, it should be noted
that both the present theory and the simulations of Ref.
[9] exploit the simplifying equal-constant approximation
[12], i.e., the assumption that the three terms in the
Frank free energy, associated with splay, twist, and bend
of the director, have equal amplitudes. It is not yet clear
to what extent departures from this condition in real sys-
tems will affect experimentally determined scaling func-
tions. The general form of the data, however, is in accor-
dance with our theory and the simulation data. In partic-
ular, the overshoot feature is readily apparent: the gra-
dient becomes less negative at larger kL (¢). A line of
slope —5 has been included as a guide to the eye.

In conclusion, we have presented an approximate
theory of phase-ordering dynamics in nematic liquid
crystals. The results are in quantitative agreement with
numerical simulations, and share many qualitative
features with experimental data. The structure factor is
predicted to exhibit a k ~ tail at large kL (7).
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